3,485 research outputs found

    Cognitive Activity Support Tools: Design of the Visual Interface

    Get PDF
    This dissertation is broadly concerned with interactive computational tools that support the performance of complex cognitive activities, examples of which are analytical reasoning, decision making, problem solving, sense making, forecasting, and learning. Examples of tools that support such activities are visualization-based tools in the areas of: education, information visualization, personal information management, statistics, and health informatics. Such tools enable access to information and data and, through interaction, enable a human-information discourse. In a more specific sense, this dissertation is concerned with the design of the visual interface of these tools. This dissertation presents a large and comprehensive theoretical framework to support research and design. Issues treated herein include interaction design and patterns of interaction for cognitive and epistemic support; analysis of the essential properties of interactive visual representations and their influences on cognitive and perceptual processes; an analysis of the structural components of interaction and how different operational forms of interaction components affect the performance of cognitive activities; an examination of how the information-processing load should be distributed between humans and tools during the performance of complex cognitive activities; and a categorization of common visualizations according to their structure and function, and a discussion of the cognitive utility of each category. This dissertation also includes a chapter that describes the design of a cognitive activity support tool, as guided by the theoretical contributions that comprise the rest of the dissertation. Those that may find this dissertation useful include researchers and practitioners in the areas of data and information visualization, visual analytics, medical and health informatics, data science, journalism, educational technology, and digital games

    Using Java for distributed computing in the Gaia satellite data processing

    Get PDF
    In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.Comment: Experimental Astronomy, August 201

    Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames

    Get PDF
    Cognitive gameplay—the cognitive dimension of a player’s experience—emerges from the interaction between a player and a game. While its design requires careful consideration, cognitive gameplay can be designed only indirectly via the design of game components. In this paper, we focus on one such component—the core mechanic—which binds a player and game together through the performance of essential interactions. Little extant research has been aimed at developing frameworks to support the design of interactions within the core mechanic with cognitive gameplay in mind. We present a taxonomic framework named INFORM (Interaction desigN For the cORe Mechanic) to address this gap. INFORM employs twelve micro-level elements that collectively give structure to any individual interaction within the core mechanic. We characterize these elements in the context of videogames, and discuss their potential influences on cognitive gameplay. We situate these elements within a broader framework that synthesizes concepts relevant to game design. INFORM is a descriptive framework, and provides a common vocabulary and a set of concepts that designers can use to think systematically about issues related to micro-level interaction design and cognitive gameplay

    Generating Effective Recommendations Using Viewing-Time Weighted Preferences for Attributes

    Get PDF
    Recommender systems are an increasingly important technology and researchers have recently argued for incorporating different kinds of data to improve recommendation quality. This paper presents a novel approach to generating recommendations and evaluates its effectiveness. First, we review evidence that item viewing time can reveal user preferences for items. Second, we model item preference as a weighted function of preferences for item attributes. We then propose a method for generating recommendations based on these two propositions. The results of a laboratory evaluation show that the proposed approach generated estimated item ratings consistent with explicit item ratings and assigned high ratings to products that reflect revealed preferences of users. We conclude by discussing implications and identifying areas for future research

    Faculty Recital:Stephen Parsons, Trombone Paul Borg, Organ Lorene Parsons, Piano

    Get PDF
    Kemp Recital Hall Tuesday Evening February 4, 1997 8:00p.m

    The Future of Nuclear Power After Fukushima

    Get PDF
    http://web.mit.edu/ceepr/www/publications/workingpapers.htmlThis paper analyzes the impact of the Fukushima accident on the future of nuclear power around the world. We begin with a discussion of the ‘but for’ baseline and the much discussed ‘nuclear renaissance.’ Our pre-Fukushima benchmark for growth in nuclear generation in the U.S. and other developed countries is much more modest than many bullish forecasts of a big renaissance in new capacity may have suggested. For at least the next decade in developed countries, it is composed primarily of life extensions for many existing reactors, modest uprates of existing reactors as their licenses are extended, and modest levels of new construction. The majority of forecasted new construction is centered in China, Russia and the former states of the FSU, India and South Korea. In analyzing the impact of Fukushima, we break the effect down into two categories: the impact on existing plants, and the impact on the construction of new units. In both cases, we argue that the accident at Fukushima will contribute to a reduction in future trends in the expansion of nuclear energy, but at this time these effects appear to be quite modest at the global level

    Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE

    Get PDF
    Background: Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Objective: Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. Methods: We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Results: Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Conclusions: Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts
    • …
    corecore